





### **Efficacy of Marrow-Stimulating Technique**

## **Through Nanofractures of the Greater Tuberosity**

### in Arthroscopic Rotator Cuff Repair

De Filippo  $F^1$ , Adriani  $M^1$ , Motta  $M^1$ , Bertoni  $G^1$ , Saccomanno  $MF^{1,2}$ , Milano  $G^{1,2}$ 

<sup>1</sup>Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy <sup>2</sup>Department of Bone and Joint Surgery, Spedali Civili, Brescia, Italy



## Disclosure: COI

#### G. Milano

• Arthrex, Inc: Paid consultant; Paid presenter or speaker; Research support

CONMED Linvatec: Paid presenter

FGP srl: Research support

Greenbone: Research support

Medacta: Research support

#### All other authors have nothing to disclose



## Background

Bone marrow stimulation reduces re-tear rate after rotator cuff repair

Ajrawat 2019



Microfractures



VS



Nanofractures: Smaller & Deeper



## Purpose

To evaluate the efficacy of the biological boost provided by

nanofractures of the greater tuberosity

on the healing of rotator cuff after arthroscopic repair



### Methods

Study design: retrospective study

### **Participants**

 Patients who underwent an arthroscopic repair of rotator cuff tears with nanofractures of the greater tuberosity

Follow-up > 24 months



# Surgical technique





Tear size and mobility

Rotator cuff repair (No cortical abrasion)



# Surgical technique





Bone marrow stimulation with nanofractures

Final result



## Methods

### **Outcome measures**

- Primary: ASES score
- Secondary
  - Quick-DASH
  - WORC
  - Structural integrity (MRI) at 6 months
    - √ dichotomized Sugaya (I-II: healed; III-V: re-tear)



## Results



M:F= 20:9

Average age: 61± 6.9 y/o

Average follow up

 $\geq$  31.5 ± 10.9 months

| Baseline           | N=29            |            |  |
|--------------------|-----------------|------------|--|
| Hand<br>dominance  | Yes N(%)        | 27(93.1%)  |  |
|                    | No, N(%)        | 2 (6.9%)   |  |
| Job<br>description | Manual, N(%)    | 14(48.3%)  |  |
|                    | Sedentary, N(%) | 15 (51.7%) |  |
| Tear size          | Medium, N(%)    | 5 (17.2%)  |  |
|                    | Large, N(%)     | 10 (34.5%) |  |
|                    | Massive, N(%)   | 14 (48.3%) |  |



## Results

#### **Comparison between pre- and postoperative functional scores**

| Outcome    | Baseline           | Follow-up          | р        |
|------------|--------------------|--------------------|----------|
| WORC       | 39 <u>+</u> 17.6   | 94.1 <u>+</u> 11.5 | < 0.0001 |
| Quick-DASH | 51.3 <u>+</u> 19.6 | 4.7 <u>+</u> 10.3  | < 0.0001 |
| ASES score | 50.5 <u>+</u> 14.9 | 94 <u>+</u> 14.5   | < 0.0001 |





## Results

### **Subgroup analysis for tear size**

| Variables               |                  | Size of the lesion |                    |                    |       |
|-------------------------|------------------|--------------------|--------------------|--------------------|-------|
|                         |                  | Medium<br>(N=5)    | Large<br>(N=10)    | Massive<br>(N=14)  | р     |
| Quick-DASH              | Mean <u>+</u> SD | 4.1 <u>+</u> 6.9   | 6.4 <u>+</u> 14.8  | 3.7 <u>+</u> 7.5   | 0.828 |
| WORC                    | Mean <u>+</u> SD | 94.8 <u>+</u> 8.8  | 93.7 <u>+</u> 14.3 | 94.2 <u>+</u> 10.8 | 0.985 |
| ASES                    | Mean <u>+</u> SD | 95 <u>+</u> 9.4    | 92.8 <u>+</u> 18.1 | 94.4 <u>+</u> 14.2 | 0.956 |
| Structural<br>integrity | Healed, N (%)    | 5 (100%)           | 8 (80%)            | 12 (85.7%)         | 0.569 |
|                         | Re-tear<br>N (%) | 0 (0%)             | 2 (20%)            | 2 (14.3%)          | 0.303 |



## Conclusions

Nanofractures of the greater tuberosity enhances functional and structural outcome after rotator cuff repair

#### **LIMITATIONS:**

- Retrospective study
- No control group







- 1. Snyder SJ, Burns J. Rotator Cuff Healing and the Bone Marrow "Crimson Duvet" From Clinical Observations to Science. Tech Should Surg. 2009;10:130-137.Kida Y, Morihara T, Matsuda K-I, et al. Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff. J Shoulder Elb Surg 2013;22(2):197-205. doi:10.1016/j.jse.2012.02.007.
- 2. Milano G, Saccomanno MF, Careri S, Taccardo G, De Vitis R, Fabbriciani C. Efficacy of marrow-stimulating technique in arthroscopic rotator cuff repair: a prospective randomized study. Arthroscopy 2013;29(5):802-810. doi:10.1016/j.arthro.2013.01.019.
- 3. Ajrawat P, Dwyer T, Almasri M, Veillette C, Romeo A, Leroux T, Theodoropoulos J, Nauth A, Henry P, Chahal J. Bone marrow stimulation decreases retear rates after primary arthroscopic rotator cuff repair: a systematic review and meta-analysis. J Shoulder Elbow Surg. 2019 Apr;28(4):782-791.
- 4. Pulatkan A, Anwar W, Tokdemir S. The clinical and radiologic outcome of microfracture on arthroscopic repair for full-thickness rotator cuff tear J Shoulder Elbow Surg (2020) Feb;29(2):252-257

